1) Let $B = \{\vec{e}_1, \vec{e}_2\}$ be a basis of a Euclidean vector space *E* satisfying:

$$\begin{cases} \vec{e}_1 . (3\vec{e}_1 + \vec{e}_2) = 2 \\ \vec{e}_2 . \vec{e}_2 = 2 \\ \vec{e}_2 . (-2\vec{e}_1 + \vec{e}_2) = 4 \end{cases}$$

- a) Find the scalar product matrix with respect to B and the angle between the vector of the basis
- b) If W is a subspace with equations (on B) x 2y = 0, find the equations of, W^{\perp} (on B)
- c) Find an orthonormal basis of *E*.
- d) Find the equations (on B) of the the orthogonal reflection with respect to W.
- 2) Let $B = \{ \vec{e}_1, \vec{e}_2 \}$ be a basis of a Euclidean vector space E satisfying: $\| \vec{e}_2 \| = \sqrt{2}$, $\vec{e}_1 - \vec{e}_2$ is a unit vector, $(\vec{e}_1 - \vec{e}_2) \cdot \vec{e}_2 = -1$
 - (a) Find the scalar product matrix with respect to B and the angle that $\vec{u} = 2\vec{e}_1 \vec{e}_2$ has with \vec{e}_2
 - (b) Find the equations of the orthogonal projection onto the subspace W spanned by \vec{e}_2 and the equations of the orthogonal reflection with respect to W.
- 3) Let $B = \{\vec{e}_1, \vec{e}_2\}$ be a basis for a Euclidean vector space *E* such that the scalar (inner) product matrix with respect to *B* is $\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$,
 - a) Find the angle that \vec{e}_1 has with \vec{e}_2
 - b) If \vec{f} is a linear map such that $\vec{f}(\vec{e}_1) = \frac{7}{5}\vec{e}_1 + \frac{8}{5}\vec{e}_2$ and $\vec{f}(\vec{e}_2) = -\frac{4}{5}\vec{e}_1 \frac{1}{5}\vec{e}_2$, is f a symmetric tensor? If possible, find a spectral basis for \vec{f} of, E

4) Consider a basis $B = \{\vec{e}_1, \vec{e}_2\}$ for a Euclidean vector plane verifying $\|\vec{e}_1\| = 1$ y $\vec{e}_1 \cdot \vec{e}_2 = 2$. If $\begin{pmatrix} 2 & 1 \end{pmatrix}$

 $\begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{pmatrix}$ is the matrix of an orthogonal tensor with respect to *B*, find the inner product

matrix with respect to B and an orthonormal basis.

5) Let $B = \{\vec{e}_1, \vec{e}_2\}$ be a basis for a Euclidean vector space satisfying:

$$\begin{cases} \vec{e}_1 \cdot \vec{e}_2 = -1 \\ (\vec{e}_2 - \vec{e}_1)(\vec{e}_1 + \vec{e}_2) = -3 \\ \| \vec{e}_2 \| = 1 \end{cases}$$

- a) Find the scalar product matrix with respect to B and the angle between the vectors of the basis
- b) If W is a subspace with equations on $B: x_1 x_2 = 0$, find the equations of the orthogonal complement of $W, W^{\perp}($ on B)
- c) If \vec{f} is a linear map such that $\vec{f}(\vec{e}_1) = 3\vec{e}_1 + \vec{e}_2$ and $\vec{f}(\vec{e}_2) = 2\vec{e}_2$, is f an orthogonal vector reflection? Justify your answer

d) Find the image under the vector rotation of angle $\frac{\pi}{2}$ of the vector \vec{e}_2